Background Noise Contributes to Organic Solvent Induced Brain Dysfunction
نویسندگان
چکیده
Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.
منابع مشابه
Effect of Exposure to a Mixture of Organic Solvents on Hearing Thresholds in Petrochemical Industry Workers
Introduction: Hearing loss is one of the most common occupational diseases. In most workplaces, workers are exposed to noise and solvents simultaneously, so the potential risk of hearing loss due to solvents may be attributed to noise. In this study we aimed to assess the effect of exposure to mixed aromatic solvents on hearing in the absence of exposure to hazardous noise. Materials and Met...
متن کاملاثرات محافظتی رسوراترول در برابر اختلال عملکرد میتوکندریایی ناشی از پاراکوات
Background and purpose: Resveratrol (RSV) is a naturally existing polyphenolic compound abundantly found in grapes and several plants. It has potent free radical scavenger and antioxidative properties with significant effects in reducing oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to PQ induced tissue damage. In this study, the protective effect of RSV was invest...
متن کاملاثر حلّالها بر میکروآلبومینوری در رنگرزان اتومبیل
Background: The health risk associated with chronic exposure to organic solvents investigated in several epidemiologic studies indicates a significant relationship between solvent exposure and glomerulonephritis. Solvents are the most commonly used chemicals in industry. According to European statistics 43% of all solvent consumption takes place in the painting industry, 10% in metal cleansing,...
متن کاملCurcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments
Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...
متن کاملNoise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries
BACKGROUND Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016